The topomer search model: A simple, quantitative theory of two-state protein folding kinetics.

نویسندگان

  • Dmitrii E Makarov
  • Kevin W Plaxco
چکیده

Most small, single-domain proteins fold with the uncomplicated, single-exponential kinetics expected for diffusion on a smooth energy landscape. Despite this energetic smoothness, the folding rates of these two-state proteins span a remarkable million-fold range. Here, we review the evidence in favor of a simple, mechanistic description, the topomer search model, which quantitatively accounts for the broad scope of observed two-state folding rates. The model, which stipulates that the search for those unfolded conformations with a grossly correct topology is the rate-limiting step in folding, fits observed rates with a correlation coefficient of approximately 0.9 using just two free parameters. The fitted values of these parameters, the pre-exponential attempt frequency and a measure of the difficulty of ordering an unfolded chain, are consistent with previously reported experimental constraints. These results suggest that the topomer search process may dominate the relative barrier heights of two-state protein-folding reactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperativity, smooth energy landscapes and the origins of topology-dependent protein folding rates.

The relative folding rates of simple, single-domain proteins, proteins whose folding energy landscapes are smooth, are highly dispersed and strongly correlated with native-state topology. In contrast, the relative folding rates of small, Gō-potential lattice polymers, which also exhibit smooth energy landscapes, are poorly dispersed and insignificantly correlated with native-state topology. Her...

متن کامل

A critical assessment of the topomer search model of protein folding using a continuum explicit-chain model with extensive conformational sampling.

Recently, a series of closely related theoretical constructs termed the "topomer search model" (TSM) has been proposed for the folding mechanism of small, single-domain proteins. A basic assumption of the proposed scenarios is that the rate-limiting step in folding is an essentially unbiased, diffusive search for a conformational state called the native topomer defined by an overall native-like...

متن کامل

The topomer-sampling model of protein folding.

Clearly, a protein cannot sample all of its conformations (e.g., approximately 3(100) approximately 10(48) for a 100 residue protein) on an in vivo folding timescale (<1 s). To investigate how the conformational dynamics of a protein can accommodate subsecond folding time scales, we introduce the concept of the native topomer, which is the set of all structures similar to the native structure (...

متن کامل

Conformational entropic barriers in topology-dependent protein folding: perspectives from a simple native-centric polymer model

The ‘topology’ of a protein native structure refers to the pattern of noncovalent contacts among its amino acid residues. Diverse folding rates of natural small single-domain proteins are known to correlate well with simple parameters derived from these patterns. Here we extend our investigation of possible physical underpinning of this remarkable topology–rate relationship by applying continuu...

متن کامل

A simple theory of protein folding kinetics

We present a simple model of protein folding dynamics that captures key qualitative elements recently seen in all-atom simulations. The goals of this theory are to serve as a simple formalism for gaining deeper insight into the physical properties seen in detailed simulations as well as to serve as a model to easily compare why these simulations suggest a different kinetic mechanism than previo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2003